Removing Mid-Spatial Frequency (MSF) Errors Using Stress-Polishing

Completed Technology Project (2012 - 2013)

Project Introduction

After diamond-turning aluminum aspheric mirrors, we will develop a stressed polishing process to improve surface figure and finish.

This IRAD proposes to evaluate how stress polishing can be used to extend the application of super-polishing to fast aspheres and freeforms, removing subaperture MSF errors, such as tool marks, from diamond-turned aluminum optics. It will leverage an old technique for manufacturing aspheres—stress polishing with a large tool. The aspheric surface will be generated using small tool manufacturing techniques. After the asphere is generated, a mechanical load will be placed onto the optic to deform the asphere into a sphere, using an interferometer to fine tune the deformation. After the asphere is deformed into a sphere, the sub-aperture tool marks can be removed by post-polishing using the Goddard super-polishing process, a process limited to spheres and flats due to the fact that it requires the use of a tight fitting large polishing tool.

Anticipated Benefits

N/A

Primary U.S. Work Locations and Key Partners

78 CC * Removing Mid-Spatial Fequency (MSF) Errors Using Stress-Polishing

Table of Contents

Project Introduction	1
Anticipated Benefits	1
Primary U.S. Work Locations	
and Key Partners	1
Images	2
Links	2
Project Website:	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3

Center Independent Research & Development: GSFC IRAD

Removing Mid-Spatial Frequency (MSF) Errors Using Stress-Polishing

Completed Technology Project (2012 - 2013)

Organizations Performing Work	Role	Туре	Location
☆Goddard Space Flight Center(GSFC)	Lead	NASA	Greenbelt,
	Organization	Center	Maryland
University of California-	Supporting	Academia	Berkeley,
Berkeley(Berkeley)	Organization		California

Primary U.S. Work Locations	
California	Maryland

Images

11797-1384963914013.jpg78 CC * Removing Mid-Spatial Fequency (MSF) Errors Using Stress-Polishing (https://techport.nasa.gov/imag e/2383)

Links

NTR 1 (no url provided)

Project Website:

http://aetd.gsfc.nasa.gov/

Organizational Responsibility

Responsible Mission Directorate:

Mission Support Directorate (MSD)

Lead Center / Facility:

Goddard Space Flight Center (GSFC)

Responsible Program:

Center Independent Research & Development: GSFC IRAD

Project Management

Program Manager:

Peter M Hughes

Project Manager:

Terence A Doiron

Principal Investigator:

Peter N Blake

Technology Maturity (TRL)

Center Independent Research & Development: GSFC IRAD

Removing Mid-Spatial Frequency (MSF) Errors Using Stress-Polishing

Completed Technology Project (2012 - 2013)

Technology Areas

Primary:

- TX12 Materials, Structures, Mechanical Systems, and Manufacturing
 - □ TX12.4 Manufacturing
 - TX12.4.3 Electronics and Optics Manufacturing Process

